Long-COVID /Post COVID-19 Syndrome
An Osteopathic Approach

Raymond N Perrin DO PhD

Hon. Senior Lecture
Allied Health Professions
Research Unit
University of Central
Lancashire, UK.

Hon. Clinical Research Fellow
Faculty of Biology Medicine & Health.
The University of Manchester
Manchester, UK.

Lecturer, International Faculty OSD

Vice Patron: University College of Osteopathy, London.
The common cold virus
Long-COVID

- Some have coined a new term for it: post-acute sequelae SARS-CoV-2 infection

PASC
What is Long-COVID?

Most people affected by the SARS-CoV-2 virus are feeling back to normal within the first 4 weeks.

However, some people can experience serious health issues that continue even after their initial recovery period.

- There are a huge amount of symptoms that people with long covid could experience, but the five most common are:
 - fatigue (overall feeling of tiredness or lack of energy)
 - headache
 - Concentration problems (trouble concentrating or ‘brain fog’)
 - hair loss
 - difficulty breathing
Symptoms

- Joint pain and swelling in the fingers
- Poor sleep
- Headache, poor memory, confused, lightheaded, dizziness, difficulty paying attention, difficulty organising oneself
- Ringing in the ears
- Itchy or sore eyes, blurred vision
- Loss of smell; strange smells (metallic or ‘burning’)
- Loss of taste
- **Chest pain, fast heart rate** (palpitations)
- Chest - Shortness of breath, especially on activity, cough
- Numbness, tingling or pain
- Joint pain and swelling in the fingers
- Pain and swelling of the knee
- Numbness, tingling or pain
- Hoarse voice
- Throat itchy, dry, sore or tight
- Cheek pain
- Rashes, including hives, new food allergies
- Indigestion, wind
- Bloating, pain, diarrhoea, constipation
- Changes to periods, swelling of testes
- **Muscle pain, especially after exercise**
- Covid toe (like chilblains), rashes

Image courtesy of: brgfx / Freepik
To make sure patients get the right level of support, people can access help at different levels.

- **Advice, information and from** www.yourcovidrecovery.nhs.uk
- **Support from your GP**
- **Assessment and support from your local hospital and community team**
- **Specialist support from a local or other hospital in GM**

Types of support

- **Tier 1:** Patient led rehabilitation and recovery
- **Tier 2:** Generalist assessment, support and rehabilitation
- **Tier 3:** Specialist assessment, support and rehabilitation
- **Tier 4:** Specialist management of specific complications
Largest cohort study (n=1733) with the longest follow-up duration for the consequences of adult patients discharged from hospital recovering.

The most common symptoms were fatigue or muscle weakness and sleep difficulties.
Into the looking glass: Post-viral syndrome post COVID-19
(160+ citations)

Ray Perrin, Lisa Riste, Mark Hann, Andreas Walther, Annice Mukherjee & Adrian Heald
Med Hypotheses. 2020; 144: 110055.
The British School of Osteopathy
1980-84
University of Salford
1994-2005
The Involvement of cerebrospinal Fluid and Lymphatic Drainage in Chronic Fatigue Syndrome (ME/CFS)
The University of Manchester, UK.
Thoracic Spine (dorsal spine)
Area most affected in ME/CFS

© Raymond N Perrin 2004
Postural strain in the thoracic spine
The connection between peripheral somatic nociceptive afferent fibres and sympathetic nerves has been observed in pathological mechanisms (Janig, 1988).
Lymphatic System
WHAT IS REALLY GOING ON IN THE BRAIN?
The blood–brain barrier (BBB)

Expert Reviews in Molecular Medicine ©2003 Cambridge University Press
The human insulin protein is composed of 51 amino acids and has a molecular weight of 5808 Da.

5808 Daltons is whapping!

Molecular weight of water: $M(H_2O) \approx 18$ Daltons
Circumventricular Organs

- Pineal Gland
- Pituitary Gland
- Area Postrema
- Subcommissural Organ
- Subfornical Organ
- Median Eminence
- & Organ Vasculosum (part of Hypothalamus)
Dr Still admitted, “Possibly less is known of the lymphatics than any other division of the life-sustaining machinery of man.”

When asked about the “eternal truths” of osteopathy, Dr Still responded, “[Those truths] are found in the spinal column with all of its intricate bony framework, plus the beautiful circulation of blood and lymph through the nerve centers of the spinal cord and throughout the whole body.”

Hildreth AG. *The Lengthening Shadow of Dr Andrew Taylor Still.* Macon, Mo: Arthur Grant Hildreth; 1938: 342, 409
Section of the meninges illustrating perivascular spaces
(Illustration from Gray’s Anatomy 38th Edition p.1213, Zhang et al., 1990)
The lymphatic drainage of the rat’s brain

Kida S, Pantazis A, Weller RO. 1993
Neuropathology, Faculty of Medicine, University of Southampton, UK.
The Cribiform Plate

© Raymond N Perrin 2004
PERFORATION THROUGH THE CRIBRIFORM PLATE

Olfactory Nerve

Blood Vessel

Perivascular Space

(Cerebrospinal Fluid)
CSF tracer (Green) moves along the paravascular space around an arteriole in the brain.

Iliff J et al. August 2012

CSF
Blood
Smooth Muscle
Endothelium (astrocytic Endfeet)
Large amounts of tracer are observed in the basal ganglia and thalamus, entering along large ventral perforating arteries.
The Basal Ganglia

NOT GLUTAMATE

\textit{gamma}-Aminobutyric acid

MAINLY

GABA

a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, cognitive functions, emotions and pain control.
The Thalamus

RELAYING SENSORY AND MOTOR SIGNALS TO CEREBRAL CORTEX

THE REGULATION OF CONSCIOUSNESS, SLEEP, ALERTNESS, AND PAIN.
Sleep Drives Metabolite Clearance from the Adult Brain

Xie L. et al

2013 VOL 342 SCIENCE 373-377

Same Rochester University team as previous study by Jeffrey J. Iliff

Under Prof. Maiken Nedergaard
Alpha Wave Intrusion in ME/CFS

“wired and fired” or Shattered
Antoine Louveau et al. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015; DOI: 10.1038/nature14432
3D-rendering of dural lymphatics (green) in a 47 year old woman.

2013: Muscle fatigue in ME/CFS
The Reason Uncovered!

20 times as much lactic acid detected when exercised and related directly to central autonomic control.

Is there a possible underlying neuro-lymphatic cause for the myalgia?

He J, Hollingsworth KG, Newton JL, Blamire AM. Cerebral vascular autonomic control is associated with skeletal muscle pH in chronic fatigue syndrome patients both at rest and during dynamic stimulation. Neuroimage Clin. 2013 Jan 5;2:168-73
Sympathetic Nervous System in ME/CFS

The formation of Varicose Megalymphatics

A.

B.

C.

R. Perrin 2020
Varicose Mega-Lymphatic Vessels

© Raymond N Perrin 2004
Varicose Lymphatic Vessels
HR = intracranial CSF pulse
50-100 bpm
Thoracic duct Pump = 4bpm
The Interference Wave =
The Cranial Rhythmic Impulse
8-12 BPM
Perrin RN. 2007
Lymphatic Drainage of the Neuraxis in Chronic Fatigue Syndrome: A Hypothetical Model for the Cranial Rhythmic Impulse.
Journal of the American Osteopathic Association, 107(06), 218-224.
Trauma/ Congenital

Physical damage/abnormality affecting perivascular spaces.
olfactory; optic; trigeminal; auditory

Spinal Canal and alongside Spinal Nerve Roots
Build Up of Stress:

- Emotional Trauma
- Physical Trauma/Pain
- Immunological Trauma
 (Infections or Sensitivities/ Allergies)
- Environmental Trauma (Pollution)
- Other Pathologies
STAGES LEADING UP TO ME/CFS

External Stimuli:
- temperature, trauma, toxins

Emotional stress (good/bad)

Internal Stimuli:
- temperature, blood pressure, trauma, toxins, disease.

From chemoreceptors, Mechanoreceptors, and nociceptors

Via Autonomic Afferent nerves

Hypothalamus

From chemoreceptors, Mechanoreceptors, baroreceptors and nociceptors

Via Autonomic Afferent nerves

Hormonal system
STAGES LEADING UP TO ME/CFS

SYMPATHETIC OVERLOAD

SYMPATHETIC DYSFUNCTION

RETROGRADE LYMPH FLOW

TOXICITY INCREASES IN CNS (HYPOTHALAMUS)

CFS/ ME
STAGES LEADING UP TO Long-COVID

1. COVID-19 Infection
2. SYMPATHETIC DYSFUNCTION
3. RETROGRADE LYMPH FLOW
4. TOXICITY INCREASES IN CNS (HYPOTHALAMUS)
5. Long-COVID
Post COVID-19 Syndrome
Perrin R et al. 2020

There is a potential for a major outbreak of post-viral syndrome to manifest following COVID-19 infection as previously reported following Severe Acute Respiratory Syndrome (SARS) infection, also a coronavirus.

Prof Harvey Moldofsky

- Severe Acute Respiratory Syndrome
Once an acute COVID-19 infection has been overcome, a subgroup of remitted patients are likely to experience long-term adverse effects resembling ME/CFS symptomatology such as persistent fatigue, diffuse myalgia, depressive symptoms, and non-restorative sleep.
Post-mortem research into the SARS outbreak of 2003, indicated the virus had crossed the blood brain barrier into the hypothalamus via the olfactory pathway (Moldofsky & Patcai, 2021). The pathway of the virus seemed to follow that previously suggested in ME/CFS patients, involving disturbance of lymphatic drainage from the microglia in the brain (Hives et al., 2017).
One of the main pathways of the lymphatic drainage of the brain is via the perivascular spaces along the olfactory nerves through the cribriform plate into the nasal mucosa (Kida, Pantazis & Weller 1993). If the pathogenesis of coronavirus affects a similar pathway, it could explain the anosmia observed in a proportion of COVID-19 patients.
Cytokine Storm

ME/CFS is often triggered by a virus and it is the build up of cytokine activity in the CNS that leads to many of the post viral symptoms due to the toxins ie the pathogen and pro-inflammatory cytokines passing through the blood brain barrier in circumventricular organs such as the hypothalamus. (Perrin 2005)
This leads to autonomic breakdown and also very high fever due to the infection and cytokines overstimulating the median preoptic nucleus of the hypothalamus.
In November 2020 electron microscope images showed intact coronavirus particles inside the olfactory mucosa, demonstrating that the main entry of SARS-CoV-2 into the brain is via the olfactory nerve pathway. They also suggest that migration of SARS-CoV-2 across the blood–brain barrier (BBB) is a valid possibility as they found immunoreactivity to SARS-CoV S protein in leptomeningeal endothelial cells, a main pathway in the neuro-lymphatic drainage (Meinhardt., et al 2021). There is further evidence that the spike protein of the virus crossing the blood-brain barrier (Rhea J et al., 2020).
This disturbance leads to a build-up of pro-inflammatory agents, especially post-infectious cytokines such as interferon gamma, and interleukin 7 which may affect the neurological control of the ‘Glymphatic System’ as observed in ME/CFS.

“The lymphatics are closely and universally connected with the spinal cord and all other nerves, and all drink from the waters of the brain”

A T STILL
“When you tap the waters of the brain by compressing the fourth ventricle see what happens in the lymphatic system. Visualise the lymph node that is holding some poison that has gathered there, changing the constituency before the lymph is moved along into the venous system”

William Garner Sutherland
(1873–1954)
Brain fluid flow switches direction in deep sleep

Fultz et al. show that retrograde brain fluid waves follow the fluctuations in neural activity and brain blood volume in slow-wave sleep (SWS).

1. The choroid plexus of the lateral ventricle and the third and fourth ventricles filter blood plasma to produce cerebrospinal fluid (CSF).

2. CSF circulates around the brain and exits through arachnoid granulations into venous blood vessels.

3. Small volumes of CSF enter the paravascular space around penetrating arterioles, where it mixes with interstitial fluid during SWS.

4. Fultz et al. found that retrograde CSF flow waves in the fourth ventricle during SWS are coupled to slow-wave neural activity and a slow oscillation in brain blood flow.
During Slow Wave Sleep the cerebral blood flow is reduced by 25% which lowers cerebral blood volume by @ 10%. This reduction in CBV allows inflow of CSF to the 3rd and 4th Ventricles which may facilitate the neurolymphatic (Glymphatic) clearance.

Prominent perivascular spaces in the right greater than left basal ganglia were visualised on MRI.
(Grach SL, et al. 2022)
Mild olfactory enhancement noted on initial MRI, resolved on follow-up.

MRI of the brain repeated 8 months later demonstrated non-enhancing T2 signal changes in the white matter of the anterior left frontal lobe (higher cognitive functions) especially along the frontal horn of the lateral ventricle.
PET CT of the brain for metabolic evaluation revealed nonspecific scattered areas of low-level hypometabolism at:

- bilateral frontal lobe (Social/emotional Skills, Cognitive Skills)
- left precuneus (memory)
- occipital lobe (sight and processing of visual perceptions.)
- and parietal regions (processing tactile sensory information)
Also heart rate responses to deep breathing were reduced on autonomic reflex screening.
HOW CAN OSTEOPATHY HELP?
The Concertina Affect
The Concertina Affect

Carotid Artery

Subclavian Vein

Oesophagus

Thoracic Duct

Azygous Vein & tributaries

Ribs

Cisterna Chyli

© Raymond N Perrin 2004
Treatment
Lymph Massage and Gentle Muscle Stretching

© Raymond N Perrin 2004
Cranial Treatment
New paper just published

Clinically, practitioners across the UK trained in the manual intervention of ME/CFS symptoms are already treating and helping patients with the Long Covid/chronic post COVID-19 symptoms as demonstrated in the reduction of the symptom severity in the Profile of Fatigue Related States scores (Ray et al, 1992).

Patients of a group of osteopaths and physiotherapists were asked to complete the Profile of Fatigue Related States (PFRS) prior to entry (baseline) and again around 3 months after receiving a manual treatment protocol for fatigue related to Long COVID. We asked practitioners to submit this as anonymised data by the end of January 2021.
Intervention:
Treatment sessions with the practitioners involving effleurage of the neck back and chest plus soft tissue stretching of paravertebral thoracic muscles, trapezi and levator scapulae, suboccipital muscular and gentle cranial osteopathic techniques were completed, once a week.
The individuals being treated also followed a daily self-massage routine of the head, neck and chest and alternating warm and cool gel packs on the upper spine to encourage a reduction of spinal inflammation and further aid lymph drainage of the brain and spine. These were performed along with regular gentle mobility exercises involving rotational movement of the thoracic region that improve spinal mobility.
None of the individuals had any prior diagnosis of chronic fatigue syndrome. All were new attendees to the clinic at the time of initial assessment.

Outcome measures: Practitioners collected and recorded symptom severity using self-reported 54-item PFRS.

Responses are scored according to a seven point Likert-scale ranging from 0 (not at all) through 3 (moderately) to 6 (extremely).
Variables pre- and post treatment were compared by ANOVA. The mean age of the men was 41.8 years with a range of 29.1-53.1 years with the corresponding mean age for women being 39.3 years with a range of 28.3-50.4 years.
The mean time interval between onset of Coronavirus symptoms and start of treatment for Long COVID was similar between men and women at just over 20 weeks. The average number of treatment sessions was similar at 9.7 in men and 9.4 in women (with a maximum of 12 weekly treatment sessions).
The change in PFRS score was similar in men (-67.2, standard deviation 4.1) and in women (-64.8, standard deviation 3.8). The fall in PFRS was highly statistically significant (F 4.8, p<0.001).

50.0% fall in scores for men and women combined.
Our results indicate that this intervention helped reduce fatigue related symptoms as indicated by the PFRS in the chronic post COVID patients. (Months refers to months after start of treatment.)
It may be that early intervention and supportive treatments at the end of the acute phase of COVID-19 can help overcome acute phase symptoms and prevent them becoming longer-term consequences.
The best results for most would be a multidisciplinary approach as suggested by Halpin and colleagues (Halpin, O’Connor & Sivan, 2020) ………
…….and hopefully including osteopathic treatment of the neuro-lymphatic system (Perrin et al., 2020).

IRAS project ID: 291940

REC reference: 21/LO/0809
100 people experiencing longer-term symptoms will be invited to take part in this research which will assess the feasibility of the osteopathic self-help intervention (The Perrin Technique) to help reduce symptoms of fatigue in Long-COVID..........

............ to be continued!
Thanks to my research colleagues at The University of Manchester and Salford Royal Foundation NHS Trust). Lisa Riste, Mark Hann, Annice Mukherjee, and especially Adrian Heald.

& Thanks to the grant from the Fund for Osteopathic Research into ME charity trust.
“Gratitude is a vaccine, an antitoxin, and an antiseptic.”

Rev John Henry Jowett (1863-1923)

Thanks again to the OIA for the invitation.

Paljon kiitoksia

raymond.perrin@manchester.ac.uk